Transient stiffening of mitral valve leaflets in the beating heart.
نویسندگان
چکیده
Anterior mitral leaflet stiffness during isovolumic contraction (IVC) is much greater than that during isovolumic relaxation (IVR). We have hypothesized that this stiffening is due to transient early systolic force development in the slip of cardiac myocytes in the annular third of the anterior leaflet. Because the atrium is excited before IVC and leaflet myocytes contract for < or = 250 ms, this hypothesis predicts that IVC leaflet stiffness will drop to near-IVR values in the latter half of ventricular systole. We tested this prediction using radiopaque markers and inverse finite element analysis of 30 beats in 10 ovine hearts. For each beat, circumferential (E(c)) and radial (E(r)) stiffness was determined during IVC (Deltat(1)), end IVC to midsystole (Deltat(2)), midsystole to IVR onset (Deltat(3)), and IVR (Deltat(4)). Group mean stiffness (E(c) + or - SD; E(r) + or - SD; in N/mm(2)) during Deltat(1) (44 + or - 16; 15 + or - 4) was 1.6-1.7 times that during Deltat(4) (28 + or - 11; 9 + or - 3); Deltat(2) stiffness (39 + or - 15; 14 + or - 4) was 1.3-1.5 times that of Deltat(4), but Deltat(3) stiffness (32 + or - 12; 11 + or - 3) was only 1.1-1.2 times that of Deltat(4). The stiffness drop during Deltat(3) supports the hypothesis that anterior leaflet stiffening during IVC arises primarily from transient force development in leaflet cardiac myocytes, with stiffness reduced as this leaflet muscle relaxes in the latter half of ventricular systole.
منابع مشابه
Active stiffening of mitral valve leaflets in the beating heart.
The anterior leaflet of the mitral valve (MV), viewed traditionally as a passive membrane, is shown to be a highly active structure in the beating heart. Two types of leaflet contractile activity are demonstrated: 1) a brief twitch at the beginning of each beat (reflecting contraction of myocytes in the leaflet in communication with and excited by left atrial muscle) that is relaxed by midsysto...
متن کاملRegional stiffening of the mitral valve anterior leaflet in the beating ovine heart.
Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and this regional stiffness difference will ...
متن کاملE VALUATION OF ADENYLATE CYCLASE ACTIVITY IN MITRAL VALVE PROLAPSE
The term mitral valve prolapse (MVP) is used for a particular subset of patients with hyperadrenergic dysautonomia. It occurs when part of a leaflet or both leaflets of the mitral valve extend above the plane of the atrioventricular junction during ventricular systole. The adenylate cyclase activity in MVP dys-autonomia was studied by extraction of enzyme from the erythrocytes from 62 norma...
متن کاملRight sided heart evaluation after successful mitral valve replacement.
Introduction: It is well-documented that right-sided heart dysfunction and significant tricuspid valve regurgitation (TVR) have adverse effects on patient outcomes after left-sided heart valve surgery. Therefore, the evaluation of right ventriclular (RV) function and TR severity in patients who had undergone mitral valve replacement (MVR), associated with/without concomitant su...
متن کاملStress-strain behavior of mitral valve leaflets in the beating ovine heart.
Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm(2) and post-transitional stiffness from 2 to 9 N/mm(2). We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear behavior during isovolumic relaxation (IV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 6 شماره
صفحات -
تاریخ انتشار 2010